Wednesday, November 5, 2008

Barisan Dan Deret


Barisan

BARISAN adalah urut-urutan bilangan dengan aturan tertentu.
Suku-suku
suatu barisan adalah nilai-nilai dari suatu fungsi yang daerah definisinya himpunan bilangan asli (n = natural = asli)

Contoh:

  1. Un = 2n - 1
    adalah suku ke-n dari suatu barisan, dimana n Î N = {1,2,3,.....}
    Barisan itu adalah : 1,3,5,7,....


  2. Diketahui barisan 1/3 , 1/6 , 1/9
    Rumus suku ke-n barisan ini adalah Un = 1/3n

Barisan Dan Deret Aritmatika (Hitung/Tambah)

  1. BARISAN ARITMATIKA

    U1, U2, U3, .......Un-1, Un disebut barisan aritmatika, jika
    U2 - U1 = U3 - U2 = .... = Un - Un-1 = konstanta

    Selisih ini disebut juga beda (b) = b =Un - Un-1

    Suku ke-n barisan aritmatika a, a+b, a+2b, ......... , a+(n-1)b
    U1, U2, U3 ............., Un

    Rumus
    Suku ke-n :

    Un = a + (n-1)b = bn + (a-b)
    ® Fungsi linier dalam n


  2. DERET ARITMATIKA

    a + (a+b) + (a+2b) + . . . . . . + (a + (n-1) b) disebut deret aritmatika.

    a = suku awal
    b = beda
    n = banyak suku
    Un = a + (n - 1) b adalah suku ke-n

    Jumlah n suku

    Sn = 1/2 n(a+Un)
    = 1/2 n[2a+(n-1)b]
    = 1/2bn² + (a - 1/2b)n ® Fungsi kuadrat (dalam n)

    Keterangan:

    1. Beda antara dua suku yang berurutan adalah tetap (b = Sn")

    2. Barisan aritmatika akan naik jika b > 0
      Barisan aritmatika akan turun jika
      b <>

    3. Berlaku hubungan Un = Sn - Sn-1 atau Un = Sn' - 1/2 Sn"

    4. Jika banyaknya suku ganjil, maka suku tengah

      Ut = 1/2 (U1 + Un) = 1/2 (U2 + Un-1) dst.

    5. Sn = 1/2 n(a+ Un) = nUt ® Ut = Sn / n

    6. Jika tiga bilangan membentuk suatu barisan aritmatika, maka untuk memudahkan perhitungan misalkan bilangan-bilangan itu adalah a - b , a , a + b

Barisan Dan Deret Geometri (Ukur/Kali)

  1. BARISAN GEOMETRI

    U1, U2, U3, ......., Un-1, Un disebut barisan geometri, jika

    U1/U2 = U3/U2 = .... = Un / Un-1 = konstanta

    Konstanta ini disebut pembanding / rasio (r)

    Rasio r = Un / Un-1

    Suku ke-n barisan geometri

    a, ar, ar² , .......arn-1
    U1, U2, U3,......,Un

    Suku ke n Un = arn-1
    ® fungsi eksponen (dalam n)


  2. DERET GEOMETRI

    a + ar² + ....... + arn-1 disebut deret geometri
    a = suku awal
    r = rasio
    n = banyak suku


    Jumlah n suku

    Sn = a(rn-1)/r-1 , jika r>1
    = a(1-rn)/1-r , jika r<1
    ® Fungsi eksponen (dalam n)

    Keterangan:

    1. Rasio antara dua suku yang berurutan adalah tetap
    2. Barisan geometri akan naik, jika untuk setiap n berlaku
      Un > Un-1
    3. Barisan geometri akan turun, jika untuk setiap n berlaku
      Un <>n-1

      Bergantian
      naik turun, jika r <>
    4. Berlaku hubungan Un = Sn - Sn-1
    5. Jika banyaknya suku ganjil, maka suku tengah

      Ut =
      Ö U1xUn = Ö U2 X Un-1 dst.

    6. Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah a/r, a, ar


  3. DERET GEOMETRI TAK BERHINGGA

    Deret Geometri tak berhingga adalah penjumlahan dari

    U1 + U2 + U3 + ..............................

    ¥
    å
    Un = a + ar + ar² .........................
    n=1

    dimana n ® ¥ dan -1 <> sehingga rn ® 0

    Dengan menggunakan rumus jumlah deret geometri didapat :

    Jumlah tak berhingga S¥ = a/(1-r)

    Deret geometri tak berhingga akan konvergen (mempunyai jumlah) untuk -1 <>

    Catatan:


    a + ar + ar2 + ar3 + ar4 + .................

    Jumlah suku-suku pada kedudukan ganjil

    a+ar2 +ar4+
    ....... Sganjil = a / (1-r²)

    Jumlah suku-suku pada kedudukan genap

    a + ar3 + ar5 + ...... Sgenap = ar / 1 -r²

    Didapat hubungan : Sgenap / Sganjil = r

PENGGUNAAN

Perhitungan BUNGA TUNGGAL (Bunga dihitung berdasarkan modal awal)

M0, M1, M2, ............., Mn

M1 = M0 + P/100 (1) M0 = {1+P/100(1)}M0

M2 = M0 + P/100 (2) M0 = {1+P/100(2)} M0



Mn =M0 + P/100 (n) M0 ® Mn = {1 + P/100 (n) } M0


Perhitungan BUNGA MAJEMUK (Bunga dihitung berdasarkan modal terakhir)

M0, M1, M2, .........., Mn

M1 = M0 + P/100 . M0 = (1 + P/100) M0

M2 = (1+P/100) M0 + P/100 (1 + P/100) M0 = (1 + P/100)(1+P/100)M0
= (1 + P/100)² M0



Mn = {1 + P/100}n M0

Keterangan :

M0 = Modal awal
Mn = Modal setelah n periode
p = Persen per periode atau suku bunga
n = Banyaknya periode

Catatan:

Rumus bunga majemuk dapat juga dipakai untuk masalah pertumbuhan tanaman, perkembangan bakteri (p > 0) dan juga untuk masalah penyusutan mesin, peluruhan bahan radio aktif (p <0)


Limit


Pengertian Limit


Untuk x mendekati harga tertentu dapat ditentukan nilai pendekatan dari f(x) yang merupakan limit (nilai Batas) dari f(x) tersebut.

CONTOH
:

Untuk x mendekati tak berhingga, maka f(a)
= 2/x akhirnya akan mendekati 0.

ditulis : l i m 2 = 0
x ® ¥ x

Hasil yang harus dihindari


0/0 ; ¥/¥ ; ¥-¥ ; 0,¥ (*) (bentuk tak tentu)

TEOREMA


1. Jika f(x) = c maka l i m f(x) = c
x ® a

2. Jika l i m f(x) = F dan l i m g(x) = G maka berlaku
x ® a x ® a
a. l i m [f(x) ± g(x)] = l i m f(x) ± l i m g(x) = F ± G
x ® a
x ® a x ® a

b. l i m [f(x) g(x)] = l i m f(x) l i m g(x) = F G
x ® a
x ® a x ® a

c. l i m k f(x) = k l i m f(x) = k F
x ® a
x ® a

l i m f(x)
d. l i m f(x) = x ® a = F
x ® a g(x) l i m g(x) G
x ® a


LANGKAH MENCARI LIMIT SUATU FUNGSI

1. Harga yang didekati disubstitusikan ke fangsi yang dimaksud.
Bila bukan (*) maka itulah nilai limitnya.


2. Bila (*) maka usahakan diuraikan.
Pada fungsi pecahan, faktor yang sama pada pembilang dan penyebut (penyebab bentuk (*)) dicoret. Pencoretan im boleh dilakukan, karena x hanya mardekati harga yang diberikan. Kemudian baru harga yang didekati disubstitusikan. Dalam konteks limit perhatikan hasil pembagian berikut
:

0/a = 0 ; a/0 = ¥ ; ¥/a = ¥ ; a/¥ = 0 ; ¥ ± a = ¥ (a = konstanta)


Limit Fungsi Trigonometri

KETENTUAN

Untuk x <<< ( x
® 0 ) maka sin x » x
(x <<<> » setara )

l i m sin x = 1 l i m tg x = 1
x ® 0 x
x ® 0 x

l i m x = 1 l i m x = 1
x ® 0 sin x
x ® 0 tg x

PERLUASAN

l i m sin ax = a/b l i m tg ax = a/b
x ® 0 bx
x ® 0 bx


l i m ax = a/b l i m ax = a/b

x ® 0 sin bx
x ® 0 tg bx


l i m sin ax = a/b l i m tg ax = a/b
x ® 0 sin bx
x ® 0 tg bx



l i m sin ax = a/b l i m tg ax = a/b
x ® 0 tg bx
x ® 0 sin bx

Rumus-rumus trigonometri yang sering digunakan untuk merubah fungsi:

cos x = sin (90° - x)
ctg x = tg (90° - x)
sin ax = 2 sin ½ax cos ½ax

cos ax = 1- 2 sin² ½ax
cos²x = 1 - sin²x



HAL-HAL KHUSUS

l i m axm + bxm-1 + .... =
x ® ¥ pxn + qxn-1 + ...
¥ untuk m > n ;
a/p untuk m =n ;
0 untuk m <>

l i m Öax2 + bx + c - Ödx2 + ex + f
x ® ¥
¥ untuk a > d ;
b-e untuk m =n ;
2Öa
-¥ untuk a <>

Bila salah satu suku belum berbentuk tanda akar maka dibentuk dengan cara mengkuadratkan kemudian menarik tanda akar.


DALIL L'HOSPITAL

Jika fungsi f dan g masing-masing terdifferensir pada titik x= a
dan f(a) = g(a) = 0 atau f(a) = g(a) = ¥ maka

l i m f(x) = l i m f(x)
x ® ¥ g(x) x ® a g(x)


CONTOH LIMIT FUNGSI ALJABAR


1. l i m x2 - 5x + 6 = (3)2 - 5(3) + 6 = 0
x ® 3

2. l i m 3x - 2 = ¥ (*) Uraikan
x ® ¥ 2x + 1 ¥

x(3 - 2/x) = 3 - 2/x = 3 - 0 = 3
x(2 - 1/x) 2 + 1/x 2 - 0 2

atau langsung gunakan hal khusus

3. l i m x2 - x - 1 = ¥ (*) Uraikan
x ® ¥ 10x + 9 ¥

x(x - 1 - 1/x) = x - 1 - 1/x = ¥ - 1 - 0 = ¥ =¥
x(10 - 9/x) 10 + 9/x 10 + 0 10

atau langsung gunakan hal khusus


4. l i m x2 - 3x + 2 = 0 (*) Uraikan
x ® 2 x2 - 5x + 6 0

(x - 1)(x - 2) = (x - 1) = 2 - 1 = -1
(x - 3)(x - 2) = (x - 3) = 2 - 3

atau langsung gunakan hal khusus ® Differensial


5. l i m x3 - 3x2 + 3x - 1 = 0 (*) Uraikan
x ® 1 x2 - 5x + 6 0

(x - 1)3 = (x - 1)2 = (1 - 1)2 = 0
(x - 1) (x - 5) (x + 5) (1 + 5) 6

atau langsung gunakan hal khusus ® Differensial



6. l i m Ö2 + x - Ö2x = 0 (*) Hilangkan tanda akar dengan
x ® 2 x - 2 0 mengalikan bentuk sekawan

(x - 1)3 = (x - 1)2 = (1 - 1)2 = 0 = 0
(x - 1) (x - 5) (x + 5) (1 + 5) 6

atau langsung gunakan hal khusus ® Differensial



7. l i m (3x - Ö9x2 + 4x) = ¥ - ¥ (*) Hilangkan tanda akar
x ® ¥

l i m (3x - Ö9x2 + 4x ) = é 3x - Ö9x2 + 4x ù = (*) Hilangkan tanda
x ® ¥ ë 3x - Ö9x2 + 4x û akar

l i m (9x2 - (9x2 + 4x) = l i m -4x =
x ® ¥ 3x + Ö(9x2 + 4x) x ® ¥ 3x + 3x Ö[1+(a/9x)]

l i m -4 = -4 = -2
x ® ¥ 3 + 3Ö(1 + 0) 6 3

atau langsung gunakan hal khusus

CONTOH LIMIT FUNGSI TRIGONOMETRI

1. l i m sin 2x = 0 (*)
x ® 0 tg 3x 0

sin 2x = 3x 2 = 1 . 1 . 2 = 2
2x tg 3x 3 3 3

2. l i m 1 - cos 2x = 0
x ® 0 sin 2x 0

1 - (1 - 2 sin² 2x) = 2 sin² x = sin x = tg x = 0
2 sin x cos x 2 sin x cos cos x

3. l i m 1 - cos x = 0
x ® 0 3x² 0

2 sin² (½x) = sin (½x) . sin (½x) = 1 . 1 . 1 = 1
3 . 4 . (½x) 6 (½x) (½x) 6 6

atau langsung gunakan hal khusus ® Differensial

4. l i m sin x - sin a = 0 (*)
x ® 0 x - a 0

2 cos ½(x+a) sin ½(x-a) = cos ½(x+a) . sin ½(x-a) =
x - a ½ (x - a )

cos ½(x+a) . 1 = cos ½(a+a) . 1 = cos a

atau langsung gunakan hal khusus ® Differensial


Persamaan Kuadrat


Menyelesaikan Persamaan Kuadrat

Bentuk umum : ax² + bx + c = 0

x variabel; a,b,c konstanta ; a ¹ 0

Menyelesaikan persamaan kuadrat berarti mencari harga x yang memenuhi persamaan kudrat (PK) tersebut (disebut akar persamaan kuadrat). Suatu bilangan disebut akar dari suatu persamaan berarti bilangan tersebut memenuhi persamaan.

Andaikan x1 dan x2 adalah akar-akar persamaan kuadrat, maka x1 dan x2 dapat ditentukan dengan cara

  1. Memfaktorkan

    ax² + bx + c = 0 ® ax² + bx + c = 0 ® a (x + p/a) (x + p/a) = 0
    ®
    x1 = - p/a dan x2 = - q/a

    dengan p.q = a.c dan p + q = b

  2. Melengkapkan bentuk kuadrat
    persamaan kuadrat tersebut dibentuk menjadi
    (x + p)² = q² ® x + p = ± q
    x1 = q - p dan x2 = - q - p

  3. Rumus ABC
    ax² + bx + c = 0 ® X1,2 = ( [-b ± Ö(b²-4ac)]/2a

    bentuk (b² - 4ac) selanjutnya disebut DISKRIMINAN (D) sehingga
    sehingga X1,2 = (-b ± ÖD)/2a
Kemungkinan Jenis Akar Ditinjau Dari Nilai Diskriminan

  1. D > 0

    x1 = (-b+ÖD)/2a ; x2 = (-b-ÖD)/2a

    PK mempunyai dua akar nyata berbeda


  2. D = 0

    x1 = x2 = -b/2a

    PK mempunyai dua akar nyata yang sama

    tt

  3. D <>

    Tidak ada harga x yang memenuhi, PK tidak mempunyai akar nyata.

syarat akar nyata/ada/riil : D ³ 0

Sifat-Sifat Akar Persamaan Kuadrat

Misalkan persamaan kuadrat ax² + bx + c = 0 dengan x1 dan x2 adalah akar-akarnya.

Dengan menggunakan akar-akar persamaan kuadrat dari rumus ABC, yaitu:

X1 = (-b+ÖD)/2a dan X2 = (-b-ÖD)/2a

didapat hubungan

X1 + X2 = -b/a
X1.X2 = c/a
X1 - X2 = ÖD/a

Perluasan Untuk Akar-Akar Nyata

  1. Kedua akar nyata berlawanan

    Maksudnya : X1 = -X2

    syarat : D > 0
    X1 + X2 = 0 ® b = 0

    Ket: X1 + X2 = 0 ® -b/a = 0 ® b = 0



  2. Kedua akar nyata berkebalikan

    Maksudnya : X1 = 1/X2

    syarat : D ³ 0
    X1 . X2 = 1 ® a = c

    Ket: X1 . X2 = 1 ® c/a = 1 ® a = c


  3. Kedua akar nyata positif

    Maksudnya : X1 > 0 ; X2 > 0

    syarat : D ³ 0
    X1 + X2 > 0
    X1 . X2 > 0



  4. Kedua akar nyata negatif

    maksudnya : X1 <>

    syarat: D ³ 0
    X1 + X2 <> 0


  5. Kedua akar nyata berlainan tanda

    Maksudnya : X1 > 0 ; X2 <>

    syarat : D > 0
    X1 . X2 <>Ket: bentuk X1 + X2 bukan merupakan syarat karena hasil dari X1 + X2 tandanya tidak pasti


  6. Kedua akar rasional

    Maksudnya : X1 dan X2 bukan berbentuk Ö

    syarat : D = bentuk kuadrat
    D = (0,1,4,9,16,25...)

    Ket: D= bentuk kuadrat akan menghilangkan tanda Ö
    , sehingga X1 dan X2 rasional

Bentuk-Bentuk Simetris Akar-Akar Persamaan Kuadrat

Suatu bentuk aljabar disebut simetris, seperti x² + y², jika x dan y dipertukarkan tempatnya menjadi y² + x², maka nilainya sama dengan bentuk semula.

Dalam hal ini kita merubah bentuk yang diberikan menjadi bentuk (X1+X2) atau (X1.X2)

1. X1² + X2²

= (X1 + X2)² - 2X1.X2
= (-b/a)² + 2(c/a)

2. X1³ + X2³

= (X1+X2)³ - 3X1X2(X1+X2)
= (-b/a)³ - 3(c/a)(-b/a)

3. X14 + X24

= (X1²+X2²)² -(X1²X2²)
= [(X1+X2)² - 2X1X2]² - 2(X1X2)²
= [(-b/a)² - 2(c/a)]² - 2(c/a)²

4. X1²X2 + X1X2²

= X1X2(X1+X2)
= c/a (-b/c)

5. 1/X1 + 1/X2

= (X1+X2)/X1+X2
= (-b/a)/(c/a)
= -b/c

6. X1/X2 + X2/X1

= (X1²+X2²)/X1X2
= ((X1+X2)²-2X1X2)/X1X2

7. (X1-X2)²

= (X1+X2)² - 4X1X2 atau [ÖD/a]² = D/a²

8. X1² - X1² = (X1+X2)(X1-X2)
= (-b/a)(ÖD/a)

Bedakan Istilah

Jumlah Kuadrat : (X1²+X2²)

dengan

Kuadrat Jumlah (X1+X2


Menyusun Persamaan Kuadrat


KEDUA AKARNYA KUADRAT

Andaikan akar-akarnya X1 dan X2

1. Mengisikan akar-akarnya kedalam bentuk (X - X1)(X - X2) = 0

2. Menggunakan sifat akar X² - (X1+X2)X + X1 . X2 = 0


KEDUA AKARNYA MEMPUNYAI HUBUNGAN DENGAN AKAR-AKAR PERSAMAAN KUADRAT YANG DIKETAHUI

Andaikan X1 dan X2 adalah akar-akar persamaan kuadrat aX²+bX+c=0 yang diketahui

  • Hubungan tidak beraturan [y1 = f(X1,X2) dan y2 = f(X1,X2)]

    Andaikan y1 dan y2 adalah akar-akar persamaan kuadrat baru.

    Langkah:

    Cari terlebih dahulu nilai dari (y1 + y2) dan (y1 . y2) yang masing-masing merupakan fungsi dari (X1 + X2) atau (X1 . X2) dimana nilai dari (X1 + X2) dan (X1 . X2) didapat dari persamaan kuadrat yang diketahui.

    Persamaan Kuadrat baru : y² - (y1 + y2)y + (y1 . y2) = 0


  • Hubungan beraturan (hal khusus)

    Akar-akar baru
    Hubungan
    PK Baru

    p lebihnya
    (X1+p) dan (X2+p)

    y = X + p
    ® X = y-p

    a(y-p)² + b(y-p) + c =0

    p kurangnya
    (X1-p) dan (X2-p)

    y = X - p
    ®
    X = y + p

    a(y+p)² + b(y+p) + c = 0

    p kali
    pX1 dan pX2

    y = pX
    ® X = y/p

    a(y/p)²+b(y/p)+c=0

    kebalikannya
    1/X1 dan 1/X2

    y=1/X
    X= 1/y

    a(y/p)² + b(1/y) + c = 0
    atau
    cy²+by+a = 0

    kuadratnya
    X1² dan X2²

    y = X²
    ® X = Öy

    a(Öy)² + b(Öy) + c = 0
    atau
    a²y + (2ay-b²)y + c² = 0


  • Permainan Matematika "Menebak Tanggal Lahir"


    kali ini saya akan mencoba menuliskan sebuah permainan matematika yang sederhana tapi cukup menarik, karena dengan permainan ini anda bisa mengetahui tanggal lahir orang lain melalui perhitungan angka-angka. Ya, anda cukup ajak teman anda yang anda ingin ketahui tanggal lahirnya untuk bermain dengan angka bersama anda, lalu anda dapat mengetahui tanggal lahirnya, mudah bukan?

    Begini, misalnya anda memiliki seorang yang sedang ditaksir lalu anda tidak mengetahui hari ulang tahunnya, maka anda dapat menggunakan permainan ini untuk mengetahui hari ulang tahunnya.

    Begini caranya :

    Pertama ....

    Ada tiga option yang harus dipilih salah satu pada langkah pertama ini:

    1. Apabila teman anda (yang ingin anda ketahui tanggal lahirnya) cukup pandai dalam menghitung, maka suruh dia memegang kertas/buku beserta pulpen (untuk coret-coretan menghitung tentunya)
    2. Apabila teman anda (yang ingin anda ketahui tanggal lahirnya) tidak cukup pandai dalam berhitung, maka suruhlah dia memegang kalkulator(untuk digunakan menghitung nanti tentunya)
    3. Apabila teman anda (yang ingin anda ketahui tanggal lahirnya) tidak bisa berhitung sama sekali dan tidak bisa menggunakan kalkulator, mending jangan diteruskan permainan ini, soalnya nanti sia-sia saja (ya iya lah?) :lol:

    Kemudian

    Suruh teman anda untuk melakukan perhitungan ini:

    A. mengalikan tanggal lahirnya dengan 5 (tanggal lahir dia X 5)

    B. hasil perhitungan pada langkah A tambahkan dengan 6 (hasil A + 6)

    C. hasil perhitungan pada langkah B kalikan dengan 4 (hasil B X 4)

    D. hasil perhitungan pada langkah C tambahkan dengan 9 (hasil C + 9)

    E. hasil perhitungan pada langkah D kalikan dengan 5 (hasil D X 5)

    F. hasil perhitungan pada langkah E tambahkan dengan bulan kelahirannya

    (NB: Januari=1, February=2, dst)

    Setelah langkah A sampai dengan F selesai, mintalah teman anda untuk memberitahukan hasil perhitungannya kepada anda, lalu anda kurangi hasil yang diberitahukan teman anda itu dengan angka kunci, yaitu 165 (hasil perhitungan – 165) nah lalu anda sekarang sudah mengetahui tanggal lahir teman anda.

    Contoh:

    Hasil perhitungan tanggal lahir saya melalui langkah A sampai dengan F adalah 2767.

    Hasil itu dikurangi 165 , jadi 2767-165 = 2602

    yap 2602 itu menunjukan tanggal lahir saya, yaitu tanggal 26 bulan 02

    Yap sekarang anda dapat mencobanya sendiri dan buat kagum teman anda. Selamat mencoba! :)